Рассчитать высоту треугольника со сторонами 115, 109 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 109 + 84}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-115)(154-109)(154-84)}}{109}\normalsize = 79.8089209}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-115)(154-109)(154-84)}}{115}\normalsize = 75.6449772}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-115)(154-109)(154-84)}}{84}\normalsize = 103.561576}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 109 и 84 равна 79.8089209
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 109 и 84 равна 75.6449772
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 109 и 84 равна 103.561576
Ссылка на результат
?n1=115&n2=109&n3=84
Найти высоту треугольника со сторонами 40, 39 и 10
Найти высоту треугольника со сторонами 147, 141 и 11
Найти высоту треугольника со сторонами 120, 107 и 96
Найти высоту треугольника со сторонами 146, 137 и 11
Найти высоту треугольника со сторонами 123, 107 и 52
Найти высоту треугольника со сторонами 118, 111 и 42
Найти высоту треугольника со сторонами 147, 141 и 11
Найти высоту треугольника со сторонами 120, 107 и 96
Найти высоту треугольника со сторонами 146, 137 и 11
Найти высоту треугольника со сторонами 123, 107 и 52
Найти высоту треугольника со сторонами 118, 111 и 42