Рассчитать высоту треугольника со сторонами 115, 111 и 95

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=115+111+952=160.5\color{#0000FF}{p = \Large{\frac{115 + 111 + 95}{2}} \normalsize = 160.5}
hb=2160.5(160.5115)(160.5111)(160.595)111=87.6745374\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{111}\normalsize = 87.6745374}
ha=2160.5(160.5115)(160.5111)(160.595)115=84.6249883\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{115}\normalsize = 84.6249883}
hc=2160.5(160.5115)(160.5111)(160.595)95=102.440775\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{95}\normalsize = 102.440775}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 111 и 95 равна 87.6745374
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 111 и 95 равна 84.6249883
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 111 и 95 равна 102.440775
Ссылка на результат
?n1=115&n2=111&n3=95