Рассчитать высоту треугольника со сторонами 115, 111 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 111 + 95}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{111}\normalsize = 87.6745374}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{115}\normalsize = 84.6249883}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-115)(160.5-111)(160.5-95)}}{95}\normalsize = 102.440775}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 111 и 95 равна 87.6745374
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 111 и 95 равна 84.6249883
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 111 и 95 равна 102.440775
Ссылка на результат
?n1=115&n2=111&n3=95
Найти высоту треугольника со сторонами 105, 89 и 58
Найти высоту треугольника со сторонами 60, 45 и 18
Найти высоту треугольника со сторонами 95, 93 и 40
Найти высоту треугольника со сторонами 73, 67 и 17
Найти высоту треугольника со сторонами 115, 97 и 58
Найти высоту треугольника со сторонами 145, 103 и 91
Найти высоту треугольника со сторонами 60, 45 и 18
Найти высоту треугольника со сторонами 95, 93 и 40
Найти высоту треугольника со сторонами 73, 67 и 17
Найти высоту треугольника со сторонами 115, 97 и 58
Найти высоту треугольника со сторонами 145, 103 и 91