Рассчитать высоту треугольника со сторонами 115, 112 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 112 + 38}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-115)(132.5-112)(132.5-38)}}{112}\normalsize = 37.8470271}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-115)(132.5-112)(132.5-38)}}{115}\normalsize = 36.8597134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-115)(132.5-112)(132.5-38)}}{38}\normalsize = 111.549133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 112 и 38 равна 37.8470271
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 112 и 38 равна 36.8597134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 112 и 38 равна 111.549133
Ссылка на результат
?n1=115&n2=112&n3=38
Найти высоту треугольника со сторонами 104, 99 и 19
Найти высоту треугольника со сторонами 84, 75 и 26
Найти высоту треугольника со сторонами 137, 124 и 63
Найти высоту треугольника со сторонами 137, 126 и 76
Найти высоту треугольника со сторонами 56, 40 и 19
Найти высоту треугольника со сторонами 83, 74 и 13
Найти высоту треугольника со сторонами 84, 75 и 26
Найти высоту треугольника со сторонами 137, 124 и 63
Найти высоту треугольника со сторонами 137, 126 и 76
Найти высоту треугольника со сторонами 56, 40 и 19
Найти высоту треугольника со сторонами 83, 74 и 13