Рассчитать высоту треугольника со сторонами 115, 113 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 113 + 112}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-115)(170-113)(170-112)}}{113}\normalsize = 98.4031004}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-115)(170-113)(170-112)}}{115}\normalsize = 96.6917422}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-115)(170-113)(170-112)}}{112}\normalsize = 99.2816996}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 113 и 112 равна 98.4031004
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 113 и 112 равна 96.6917422
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 113 и 112 равна 99.2816996
Ссылка на результат
?n1=115&n2=113&n3=112
Найти высоту треугольника со сторонами 140, 98 и 69
Найти высоту треугольника со сторонами 101, 86 и 70
Найти высоту треугольника со сторонами 143, 128 и 111
Найти высоту треугольника со сторонами 117, 113 и 70
Найти высоту треугольника со сторонами 38, 26 и 14
Найти высоту треугольника со сторонами 136, 129 и 39
Найти высоту треугольника со сторонами 101, 86 и 70
Найти высоту треугольника со сторонами 143, 128 и 111
Найти высоту треугольника со сторонами 117, 113 и 70
Найти высоту треугольника со сторонами 38, 26 и 14
Найти высоту треугольника со сторонами 136, 129 и 39