Рассчитать высоту треугольника со сторонами 115, 114 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 114 + 11}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-115)(120-114)(120-11)}}{114}\normalsize = 10.9897963}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-115)(120-114)(120-11)}}{115}\normalsize = 10.8942329}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-115)(120-114)(120-11)}}{11}\normalsize = 113.894253}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 114 и 11 равна 10.9897963
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 114 и 11 равна 10.8942329
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 114 и 11 равна 113.894253
Ссылка на результат
?n1=115&n2=114&n3=11
Найти высоту треугольника со сторонами 86, 69 и 66
Найти высоту треугольника со сторонами 145, 115 и 40
Найти высоту треугольника со сторонами 141, 118 и 40
Найти высоту треугольника со сторонами 106, 84 и 72
Найти высоту треугольника со сторонами 149, 137 и 96
Найти высоту треугольника со сторонами 104, 55 и 50
Найти высоту треугольника со сторонами 145, 115 и 40
Найти высоту треугольника со сторонами 141, 118 и 40
Найти высоту треугольника со сторонами 106, 84 и 72
Найти высоту треугольника со сторонами 149, 137 и 96
Найти высоту треугольника со сторонами 104, 55 и 50