Рассчитать высоту треугольника со сторонами 115, 115 и 113
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 115 + 113}{2}} \normalsize = 171.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171.5(171.5-115)(171.5-115)(171.5-113)}}{115}\normalsize = 98.4216402}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171.5(171.5-115)(171.5-115)(171.5-113)}}{115}\normalsize = 98.4216402}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171.5(171.5-115)(171.5-115)(171.5-113)}}{113}\normalsize = 100.163616}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 115 и 113 равна 98.4216402
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 115 и 113 равна 98.4216402
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 115 и 113 равна 100.163616
Ссылка на результат
?n1=115&n2=115&n3=113
Найти высоту треугольника со сторонами 149, 135 и 134
Найти высоту треугольника со сторонами 82, 53 и 32
Найти высоту треугольника со сторонами 88, 88 и 25
Найти высоту треугольника со сторонами 111, 107 и 78
Найти высоту треугольника со сторонами 15, 14 и 3
Найти высоту треугольника со сторонами 143, 140 и 138
Найти высоту треугольника со сторонами 82, 53 и 32
Найти высоту треугольника со сторонами 88, 88 и 25
Найти высоту треугольника со сторонами 111, 107 и 78
Найти высоту треугольника со сторонами 15, 14 и 3
Найти высоту треугольника со сторонами 143, 140 и 138