Рассчитать высоту треугольника со сторонами 115, 69 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 69 + 60}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-115)(122-69)(122-60)}}{69}\normalsize = 48.5560802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-115)(122-69)(122-60)}}{115}\normalsize = 29.1336481}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-115)(122-69)(122-60)}}{60}\normalsize = 55.8394922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 69 и 60 равна 48.5560802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 69 и 60 равна 29.1336481
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 69 и 60 равна 55.8394922
Ссылка на результат
?n1=115&n2=69&n3=60
Найти высоту треугольника со сторонами 129, 129 и 26
Найти высоту треугольника со сторонами 145, 128 и 32
Найти высоту треугольника со сторонами 149, 105 и 93
Найти высоту треугольника со сторонами 137, 113 и 104
Найти высоту треугольника со сторонами 64, 50 и 41
Найти высоту треугольника со сторонами 138, 120 и 84
Найти высоту треугольника со сторонами 145, 128 и 32
Найти высоту треугольника со сторонами 149, 105 и 93
Найти высоту треугольника со сторонами 137, 113 и 104
Найти высоту треугольника со сторонами 64, 50 и 41
Найти высоту треугольника со сторонами 138, 120 и 84