Рассчитать высоту треугольника со сторонами 115, 74 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 74 + 65}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-115)(127-74)(127-65)}}{74}\normalsize = 60.4817765}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-115)(127-74)(127-65)}}{115}\normalsize = 38.9187084}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-115)(127-74)(127-65)}}{65}\normalsize = 68.8561763}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 74 и 65 равна 60.4817765
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 74 и 65 равна 38.9187084
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 74 и 65 равна 68.8561763
Ссылка на результат
?n1=115&n2=74&n3=65
Найти высоту треугольника со сторонами 118, 110 и 71
Найти высоту треугольника со сторонами 137, 105 и 92
Найти высоту треугольника со сторонами 94, 67 и 33
Найти высоту треугольника со сторонами 27, 15 и 13
Найти высоту треугольника со сторонами 144, 118 и 45
Найти высоту треугольника со сторонами 71, 65 и 11
Найти высоту треугольника со сторонами 137, 105 и 92
Найти высоту треугольника со сторонами 94, 67 и 33
Найти высоту треугольника со сторонами 27, 15 и 13
Найти высоту треугольника со сторонами 144, 118 и 45
Найти высоту треугольника со сторонами 71, 65 и 11