Рассчитать высоту треугольника со сторонами 115, 79 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 79 + 66}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-115)(130-79)(130-66)}}{79}\normalsize = 63.8697601}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-115)(130-79)(130-66)}}{115}\normalsize = 43.8757483}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-115)(130-79)(130-66)}}{66}\normalsize = 76.4501674}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 79 и 66 равна 63.8697601
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 79 и 66 равна 43.8757483
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 79 и 66 равна 76.4501674
Ссылка на результат
?n1=115&n2=79&n3=66
Найти высоту треугольника со сторонами 93, 49 и 49
Найти высоту треугольника со сторонами 145, 131 и 99
Найти высоту треугольника со сторонами 140, 129 и 45
Найти высоту треугольника со сторонами 43, 39 и 32
Найти высоту треугольника со сторонами 131, 130 и 4
Найти высоту треугольника со сторонами 119, 109 и 36
Найти высоту треугольника со сторонами 145, 131 и 99
Найти высоту треугольника со сторонами 140, 129 и 45
Найти высоту треугольника со сторонами 43, 39 и 32
Найти высоту треугольника со сторонами 131, 130 и 4
Найти высоту треугольника со сторонами 119, 109 и 36