Рассчитать высоту треугольника со сторонами 115, 79 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 79 + 68}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-115)(131-79)(131-68)}}{79}\normalsize = 66.3392397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-115)(131-79)(131-68)}}{115}\normalsize = 45.5721734}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-115)(131-79)(131-68)}}{68}\normalsize = 77.0705873}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 79 и 68 равна 66.3392397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 79 и 68 равна 45.5721734
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 79 и 68 равна 77.0705873
Ссылка на результат
?n1=115&n2=79&n3=68
Найти высоту треугольника со сторонами 120, 118 и 40
Найти высоту треугольника со сторонами 93, 90 и 51
Найти высоту треугольника со сторонами 107, 98 и 58
Найти высоту треугольника со сторонами 50, 42 и 9
Найти высоту треугольника со сторонами 63, 53 и 14
Найти высоту треугольника со сторонами 75, 61 и 22
Найти высоту треугольника со сторонами 93, 90 и 51
Найти высоту треугольника со сторонами 107, 98 и 58
Найти высоту треугольника со сторонами 50, 42 и 9
Найти высоту треугольника со сторонами 63, 53 и 14
Найти высоту треугольника со сторонами 75, 61 и 22