Рассчитать высоту треугольника со сторонами 115, 90 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 90 + 81}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-115)(143-90)(143-81)}}{90}\normalsize = 80.6061726}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-115)(143-90)(143-81)}}{115}\normalsize = 63.0830916}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-115)(143-90)(143-81)}}{81}\normalsize = 89.562414}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 90 и 81 равна 80.6061726
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 90 и 81 равна 63.0830916
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 90 и 81 равна 89.562414
Ссылка на результат
?n1=115&n2=90&n3=81
Найти высоту треугольника со сторонами 125, 68 и 66
Найти высоту треугольника со сторонами 138, 110 и 96
Найти высоту треугольника со сторонами 116, 80 и 78
Найти высоту треугольника со сторонами 124, 69 и 65
Найти высоту треугольника со сторонами 143, 115 и 84
Найти высоту треугольника со сторонами 89, 72 и 28
Найти высоту треугольника со сторонами 138, 110 и 96
Найти высоту треугольника со сторонами 116, 80 и 78
Найти высоту треугольника со сторонами 124, 69 и 65
Найти высоту треугольника со сторонами 143, 115 и 84
Найти высоту треугольника со сторонами 89, 72 и 28