Рассчитать высоту треугольника со сторонами 115, 94 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 94 + 36}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-115)(122.5-94)(122.5-36)}}{94}\normalsize = 32.0207354}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-115)(122.5-94)(122.5-36)}}{115}\normalsize = 26.1734707}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-115)(122.5-94)(122.5-36)}}{36}\normalsize = 83.609698}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 94 и 36 равна 32.0207354
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 94 и 36 равна 26.1734707
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 94 и 36 равна 83.609698
Ссылка на результат
?n1=115&n2=94&n3=36
Найти высоту треугольника со сторонами 65, 64 и 13
Найти высоту треугольника со сторонами 115, 109 и 65
Найти высоту треугольника со сторонами 139, 139 и 5
Найти высоту треугольника со сторонами 143, 131 и 87
Найти высоту треугольника со сторонами 147, 141 и 61
Найти высоту треугольника со сторонами 112, 111 и 103
Найти высоту треугольника со сторонами 115, 109 и 65
Найти высоту треугольника со сторонами 139, 139 и 5
Найти высоту треугольника со сторонами 143, 131 и 87
Найти высоту треугольника со сторонами 147, 141 и 61
Найти высоту треугольника со сторонами 112, 111 и 103