Рассчитать высоту треугольника со сторонами 115, 95 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 95 + 79}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-115)(144.5-95)(144.5-79)}}{95}\normalsize = 78.2662582}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-115)(144.5-95)(144.5-79)}}{115}\normalsize = 64.654735}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-115)(144.5-95)(144.5-79)}}{79}\normalsize = 94.1176523}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 95 и 79 равна 78.2662582
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 95 и 79 равна 64.654735
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 95 и 79 равна 94.1176523
Ссылка на результат
?n1=115&n2=95&n3=79
Найти высоту треугольника со сторонами 132, 132 и 101
Найти высоту треугольника со сторонами 145, 145 и 107
Найти высоту треугольника со сторонами 127, 101 и 90
Найти высоту треугольника со сторонами 136, 135 и 114
Найти высоту треугольника со сторонами 117, 78 и 76
Найти высоту треугольника со сторонами 96, 96 и 50
Найти высоту треугольника со сторонами 145, 145 и 107
Найти высоту треугольника со сторонами 127, 101 и 90
Найти высоту треугольника со сторонами 136, 135 и 114
Найти высоту треугольника со сторонами 117, 78 и 76
Найти высоту треугольника со сторонами 96, 96 и 50