Рассчитать высоту треугольника со сторонами 115, 95 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 95 + 82}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-115)(146-95)(146-82)}}{95}\normalsize = 80.9168076}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-115)(146-95)(146-82)}}{115}\normalsize = 66.8443193}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-115)(146-95)(146-82)}}{82}\normalsize = 93.745082}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 95 и 82 равна 80.9168076
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 95 и 82 равна 66.8443193
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 95 и 82 равна 93.745082
Ссылка на результат
?n1=115&n2=95&n3=82
Найти высоту треугольника со сторонами 126, 76 и 51
Найти высоту треугольника со сторонами 132, 129 и 28
Найти высоту треугольника со сторонами 141, 135 и 66
Найти высоту треугольника со сторонами 131, 118 и 108
Найти высоту треугольника со сторонами 99, 64 и 48
Найти высоту треугольника со сторонами 100, 95 и 33
Найти высоту треугольника со сторонами 132, 129 и 28
Найти высоту треугольника со сторонами 141, 135 и 66
Найти высоту треугольника со сторонами 131, 118 и 108
Найти высоту треугольника со сторонами 99, 64 и 48
Найти высоту треугольника со сторонами 100, 95 и 33