Рассчитать высоту треугольника со сторонами 115, 99 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 99 + 50}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-115)(132-99)(132-50)}}{99}\normalsize = 49.7817459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-115)(132-99)(132-50)}}{115}\normalsize = 42.8555899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-115)(132-99)(132-50)}}{50}\normalsize = 98.5678568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 99 и 50 равна 49.7817459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 99 и 50 равна 42.8555899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 99 и 50 равна 98.5678568
Ссылка на результат
?n1=115&n2=99&n3=50
Найти высоту треугольника со сторонами 150, 150 и 107
Найти высоту треугольника со сторонами 129, 127 и 42
Найти высоту треугольника со сторонами 104, 71 и 41
Найти высоту треугольника со сторонами 140, 99 и 54
Найти высоту треугольника со сторонами 144, 126 и 91
Найти высоту треугольника со сторонами 36, 33 и 25
Найти высоту треугольника со сторонами 129, 127 и 42
Найти высоту треугольника со сторонами 104, 71 и 41
Найти высоту треугольника со сторонами 140, 99 и 54
Найти высоту треугольника со сторонами 144, 126 и 91
Найти высоту треугольника со сторонами 36, 33 и 25