Рассчитать высоту треугольника со сторонами 115, 99 и 73

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 99 + 73}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-115)(143.5-99)(143.5-73)}}{99}\normalsize = 72.363197}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-115)(143.5-99)(143.5-73)}}{115}\normalsize = 62.2952739}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-115)(143.5-99)(143.5-73)}}{73}\normalsize = 98.1363904}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 99 и 73 равна 72.363197
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 99 и 73 равна 62.2952739
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 99 и 73 равна 98.1363904
Ссылка на результат
?n1=115&n2=99&n3=73