Рассчитать высоту треугольника со сторонами 116, 102 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 102 + 26}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-116)(122-102)(122-26)}}{102}\normalsize = 23.2453441}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-116)(122-102)(122-26)}}{116}\normalsize = 20.4398715}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-116)(122-102)(122-26)}}{26}\normalsize = 91.1932729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 102 и 26 равна 23.2453441
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 102 и 26 равна 20.4398715
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 102 и 26 равна 91.1932729
Ссылка на результат
?n1=116&n2=102&n3=26
Найти высоту треугольника со сторонами 101, 82 и 68
Найти высоту треугольника со сторонами 146, 125 и 106
Найти высоту треугольника со сторонами 76, 75 и 6
Найти высоту треугольника со сторонами 122, 95 и 79
Найти высоту треугольника со сторонами 96, 89 и 61
Найти высоту треугольника со сторонами 46, 43 и 4
Найти высоту треугольника со сторонами 146, 125 и 106
Найти высоту треугольника со сторонами 76, 75 и 6
Найти высоту треугольника со сторонами 122, 95 и 79
Найти высоту треугольника со сторонами 96, 89 и 61
Найти высоту треугольника со сторонами 46, 43 и 4