Рассчитать высоту треугольника со сторонами 116, 110 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 110 + 41}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-116)(133.5-110)(133.5-41)}}{110}\normalsize = 40.9733775}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-116)(133.5-110)(133.5-41)}}{116}\normalsize = 38.8540649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-116)(133.5-110)(133.5-41)}}{41}\normalsize = 109.928574}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 110 и 41 равна 40.9733775
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 110 и 41 равна 38.8540649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 110 и 41 равна 109.928574
Ссылка на результат
?n1=116&n2=110&n3=41
Найти высоту треугольника со сторонами 79, 79 и 26
Найти высоту треугольника со сторонами 58, 57 и 36
Найти высоту треугольника со сторонами 94, 53 и 47
Найти высоту треугольника со сторонами 84, 70 и 24
Найти высоту треугольника со сторонами 139, 123 и 122
Найти высоту треугольника со сторонами 130, 92 и 73
Найти высоту треугольника со сторонами 58, 57 и 36
Найти высоту треугольника со сторонами 94, 53 и 47
Найти высоту треугольника со сторонами 84, 70 и 24
Найти высоту треугольника со сторонами 139, 123 и 122
Найти высоту треугольника со сторонами 130, 92 и 73