Рассчитать высоту треугольника со сторонами 116, 113 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 113 + 96}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-116)(162.5-113)(162.5-96)}}{113}\normalsize = 88.2710176}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-116)(162.5-113)(162.5-96)}}{116}\normalsize = 85.9881465}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-116)(162.5-113)(162.5-96)}}{96}\normalsize = 103.902344}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 113 и 96 равна 88.2710176
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 113 и 96 равна 85.9881465
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 113 и 96 равна 103.902344
Ссылка на результат
?n1=116&n2=113&n3=96
Найти высоту треугольника со сторонами 135, 117 и 34
Найти высоту треугольника со сторонами 147, 133 и 108
Найти высоту треугольника со сторонами 79, 72 и 25
Найти высоту треугольника со сторонами 89, 55 и 37
Найти высоту треугольника со сторонами 142, 114 и 106
Найти высоту треугольника со сторонами 80, 55 и 50
Найти высоту треугольника со сторонами 147, 133 и 108
Найти высоту треугольника со сторонами 79, 72 и 25
Найти высоту треугольника со сторонами 89, 55 и 37
Найти высоту треугольника со сторонами 142, 114 и 106
Найти высоту треугольника со сторонами 80, 55 и 50