Рассчитать высоту треугольника со сторонами 116, 114 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 114 + 83}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-116)(156.5-114)(156.5-83)}}{114}\normalsize = 78.0634896}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-116)(156.5-114)(156.5-83)}}{116}\normalsize = 76.7175674}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-116)(156.5-114)(156.5-83)}}{83}\normalsize = 107.219733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 114 и 83 равна 78.0634896
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 114 и 83 равна 76.7175674
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 114 и 83 равна 107.219733
Ссылка на результат
?n1=116&n2=114&n3=83
Найти высоту треугольника со сторонами 107, 81 и 67
Найти высоту треугольника со сторонами 90, 60 и 59
Найти высоту треугольника со сторонами 117, 115 и 29
Найти высоту треугольника со сторонами 123, 112 и 82
Найти высоту треугольника со сторонами 147, 146 и 28
Найти высоту треугольника со сторонами 114, 94 и 65
Найти высоту треугольника со сторонами 90, 60 и 59
Найти высоту треугольника со сторонами 117, 115 и 29
Найти высоту треугольника со сторонами 123, 112 и 82
Найти высоту треугольника со сторонами 147, 146 и 28
Найти высоту треугольника со сторонами 114, 94 и 65