Рассчитать высоту треугольника со сторонами 116, 115 и 104

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 115 + 104}{2}} \normalsize = 167.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167.5(167.5-116)(167.5-115)(167.5-104)}}{115}\normalsize = 93.2630663}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167.5(167.5-116)(167.5-115)(167.5-104)}}{116}\normalsize = 92.4590743}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167.5(167.5-116)(167.5-115)(167.5-104)}}{104}\normalsize = 103.127429}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 115 и 104 равна 93.2630663
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 115 и 104 равна 92.4590743
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 115 и 104 равна 103.127429
Ссылка на результат
?n1=116&n2=115&n3=104