Рассчитать высоту треугольника со сторонами 116, 83 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 83 + 50}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-83)(124.5-50)}}{83}\normalsize = 43.5861216}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-83)(124.5-50)}}{116}\normalsize = 31.1866215}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-116)(124.5-83)(124.5-50)}}{50}\normalsize = 72.3529619}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 83 и 50 равна 43.5861216
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 83 и 50 равна 31.1866215
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 83 и 50 равна 72.3529619
Ссылка на результат
?n1=116&n2=83&n3=50
Найти высоту треугольника со сторонами 144, 106 и 72
Найти высоту треугольника со сторонами 43, 33 и 12
Найти высоту треугольника со сторонами 133, 104 и 48
Найти высоту треугольника со сторонами 106, 88 и 87
Найти высоту треугольника со сторонами 132, 88 и 69
Найти высоту треугольника со сторонами 122, 75 и 58
Найти высоту треугольника со сторонами 43, 33 и 12
Найти высоту треугольника со сторонами 133, 104 и 48
Найти высоту треугольника со сторонами 106, 88 и 87
Найти высоту треугольника со сторонами 132, 88 и 69
Найти высоту треугольника со сторонами 122, 75 и 58