Рассчитать высоту треугольника со сторонами 116, 86 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 86 + 66}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-116)(134-86)(134-66)}}{86}\normalsize = 65.2522169}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-116)(134-86)(134-66)}}{116}\normalsize = 48.3766436}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-116)(134-86)(134-66)}}{66}\normalsize = 85.025616}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 86 и 66 равна 65.2522169
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 86 и 66 равна 48.3766436
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 86 и 66 равна 85.025616
Ссылка на результат
?n1=116&n2=86&n3=66
Найти высоту треугольника со сторонами 122, 107 и 105
Найти высоту треугольника со сторонами 81, 65 и 52
Найти высоту треугольника со сторонами 59, 49 и 35
Найти высоту треугольника со сторонами 95, 64 и 63
Найти высоту треугольника со сторонами 109, 81 и 79
Найти высоту треугольника со сторонами 114, 70 и 68
Найти высоту треугольника со сторонами 81, 65 и 52
Найти высоту треугольника со сторонами 59, 49 и 35
Найти высоту треугольника со сторонами 95, 64 и 63
Найти высоту треугольника со сторонами 109, 81 и 79
Найти высоту треугольника со сторонами 114, 70 и 68