Рассчитать высоту треугольника со сторонами 116, 87 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 87 + 78}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{87}\normalsize = 77.9917826}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{116}\normalsize = 58.493837}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{78}\normalsize = 86.9908345}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 87 и 78 равна 77.9917826
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 87 и 78 равна 58.493837
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 87 и 78 равна 86.9908345
Ссылка на результат
?n1=116&n2=87&n3=78
Найти высоту треугольника со сторонами 98, 94 и 11
Найти высоту треугольника со сторонами 109, 100 и 29
Найти высоту треугольника со сторонами 150, 144 и 67
Найти высоту треугольника со сторонами 81, 58 и 30
Найти высоту треугольника со сторонами 132, 101 и 36
Найти высоту треугольника со сторонами 142, 121 и 39
Найти высоту треугольника со сторонами 109, 100 и 29
Найти высоту треугольника со сторонами 150, 144 и 67
Найти высоту треугольника со сторонами 81, 58 и 30
Найти высоту треугольника со сторонами 132, 101 и 36
Найти высоту треугольника со сторонами 142, 121 и 39