Рассчитать высоту треугольника со сторонами 116, 87 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 87 + 78}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{87}\normalsize = 77.9917826}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{116}\normalsize = 58.493837}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-87)(140.5-78)}}{78}\normalsize = 86.9908345}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 87 и 78 равна 77.9917826
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 87 и 78 равна 58.493837
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 87 и 78 равна 86.9908345
Ссылка на результат
?n1=116&n2=87&n3=78
Найти высоту треугольника со сторонами 45, 28 и 20
Найти высоту треугольника со сторонами 117, 82 и 79
Найти высоту треугольника со сторонами 117, 117 и 26
Найти высоту треугольника со сторонами 137, 134 и 5
Найти высоту треугольника со сторонами 144, 102 и 70
Найти высоту треугольника со сторонами 140, 119 и 56
Найти высоту треугольника со сторонами 117, 82 и 79
Найти высоту треугольника со сторонами 117, 117 и 26
Найти высоту треугольника со сторонами 137, 134 и 5
Найти высоту треугольника со сторонами 144, 102 и 70
Найти высоту треугольника со сторонами 140, 119 и 56