Рассчитать высоту треугольника со сторонами 116, 88 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 88 + 40}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-116)(122-88)(122-40)}}{88}\normalsize = 32.4675299}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-116)(122-88)(122-40)}}{116}\normalsize = 24.6305399}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-116)(122-88)(122-40)}}{40}\normalsize = 71.4285657}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 88 и 40 равна 32.4675299
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 88 и 40 равна 24.6305399
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 88 и 40 равна 71.4285657
Ссылка на результат
?n1=116&n2=88&n3=40
Найти высоту треугольника со сторонами 117, 112 и 81
Найти высоту треугольника со сторонами 70, 69 и 67
Найти высоту треугольника со сторонами 109, 104 и 37
Найти высоту треугольника со сторонами 146, 126 и 40
Найти высоту треугольника со сторонами 122, 84 и 57
Найти высоту треугольника со сторонами 125, 71 и 69
Найти высоту треугольника со сторонами 70, 69 и 67
Найти высоту треугольника со сторонами 109, 104 и 37
Найти высоту треугольника со сторонами 146, 126 и 40
Найти высоту треугольника со сторонами 122, 84 и 57
Найти высоту треугольника со сторонами 125, 71 и 69