Рассчитать высоту треугольника со сторонами 116, 91 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 91 + 74}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-91)(140.5-74)}}{91}\normalsize = 73.9815166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-91)(140.5-74)}}{116}\normalsize = 58.0372242}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-116)(140.5-91)(140.5-74)}}{74}\normalsize = 90.9772704}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 91 и 74 равна 73.9815166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 91 и 74 равна 58.0372242
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 91 и 74 равна 90.9772704
Ссылка на результат
?n1=116&n2=91&n3=74
Найти высоту треугольника со сторонами 41, 38 и 5
Найти высоту треугольника со сторонами 132, 124 и 114
Найти высоту треугольника со сторонами 105, 74 и 47
Найти высоту треугольника со сторонами 108, 96 и 32
Найти высоту треугольника со сторонами 134, 113 и 29
Найти высоту треугольника со сторонами 122, 110 и 73
Найти высоту треугольника со сторонами 132, 124 и 114
Найти высоту треугольника со сторонами 105, 74 и 47
Найти высоту треугольника со сторонами 108, 96 и 32
Найти высоту треугольника со сторонами 134, 113 и 29
Найти высоту треугольника со сторонами 122, 110 и 73