Рассчитать высоту треугольника со сторонами 116, 94 и 60

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 94 + 60}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-116)(135-94)(135-60)}}{94}\normalsize = 59.7541932}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-116)(135-94)(135-60)}}{116}\normalsize = 48.4215014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-116)(135-94)(135-60)}}{60}\normalsize = 93.6149027}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 94 и 60 равна 59.7541932
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 94 и 60 равна 48.4215014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 94 и 60 равна 93.6149027
Ссылка на результат
?n1=116&n2=94&n3=60