Рассчитать высоту треугольника со сторонами 116, 95 и 53

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 95 + 53}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-116)(132-95)(132-53)}}{95}\normalsize = 52.3079566}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-116)(132-95)(132-53)}}{116}\normalsize = 42.8384128}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-116)(132-95)(132-53)}}{53}\normalsize = 93.7595449}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 95 и 53 равна 52.3079566
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 95 и 53 равна 42.8384128
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 95 и 53 равна 93.7595449
Ссылка на результат
?n1=116&n2=95&n3=53