Рассчитать высоту треугольника со сторонами 116, 95 и 65

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 95 + 65}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-116)(138-95)(138-65)}}{95}\normalsize = 64.990957}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-116)(138-95)(138-65)}}{116}\normalsize = 53.2253527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-116)(138-95)(138-65)}}{65}\normalsize = 94.9867833}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 95 и 65 равна 64.990957
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 95 и 65 равна 53.2253527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 95 и 65 равна 94.9867833
Ссылка на результат
?n1=116&n2=95&n3=65