Рассчитать высоту треугольника со сторонами 116, 98 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 98 + 97}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-116)(155.5-98)(155.5-97)}}{98}\normalsize = 92.7640112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-116)(155.5-98)(155.5-97)}}{116}\normalsize = 78.3695957}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-116)(155.5-98)(155.5-97)}}{97}\normalsize = 93.7203413}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 98 и 97 равна 92.7640112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 98 и 97 равна 78.3695957
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 98 и 97 равна 93.7203413
Ссылка на результат
?n1=116&n2=98&n3=97
Найти высоту треугольника со сторонами 121, 111 и 92
Найти высоту треугольника со сторонами 138, 116 и 26
Найти высоту треугольника со сторонами 134, 134 и 71
Найти высоту треугольника со сторонами 137, 135 и 76
Найти высоту треугольника со сторонами 96, 55 и 51
Найти высоту треугольника со сторонами 141, 136 и 11
Найти высоту треугольника со сторонами 138, 116 и 26
Найти высоту треугольника со сторонами 134, 134 и 71
Найти высоту треугольника со сторонами 137, 135 и 76
Найти высоту треугольника со сторонами 96, 55 и 51
Найти высоту треугольника со сторонами 141, 136 и 11