Рассчитать высоту треугольника со сторонами 116, 99 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 99 + 61}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-116)(138-99)(138-61)}}{99}\normalsize = 60.9990892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-116)(138-99)(138-61)}}{116}\normalsize = 52.0595675}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-116)(138-99)(138-61)}}{61}\normalsize = 98.9985219}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 99 и 61 равна 60.9990892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 99 и 61 равна 52.0595675
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 99 и 61 равна 98.9985219
Ссылка на результат
?n1=116&n2=99&n3=61
Найти высоту треугольника со сторонами 121, 108 и 21
Найти высоту треугольника со сторонами 67, 58 и 14
Найти высоту треугольника со сторонами 134, 124 и 114
Найти высоту треугольника со сторонами 114, 102 и 86
Найти высоту треугольника со сторонами 107, 73 и 51
Найти высоту треугольника со сторонами 76, 70 и 62
Найти высоту треугольника со сторонами 67, 58 и 14
Найти высоту треугольника со сторонами 134, 124 и 114
Найти высоту треугольника со сторонами 114, 102 и 86
Найти высоту треугольника со сторонами 107, 73 и 51
Найти высоту треугольника со сторонами 76, 70 и 62