Рассчитать высоту треугольника со сторонами 117, 100 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 100 + 70}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-100)(143.5-70)}}{100}\normalsize = 69.7376295}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-100)(143.5-70)}}{117}\normalsize = 59.6048116}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-100)(143.5-70)}}{70}\normalsize = 99.6251851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 100 и 70 равна 69.7376295
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 100 и 70 равна 59.6048116
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 100 и 70 равна 99.6251851
Ссылка на результат
?n1=117&n2=100&n3=70
Найти высоту треугольника со сторонами 143, 131 и 71
Найти высоту треугольника со сторонами 137, 84 и 63
Найти высоту треугольника со сторонами 119, 94 и 40
Найти высоту треугольника со сторонами 126, 77 и 57
Найти высоту треугольника со сторонами 143, 121 и 25
Найти высоту треугольника со сторонами 119, 104 и 52
Найти высоту треугольника со сторонами 137, 84 и 63
Найти высоту треугольника со сторонами 119, 94 и 40
Найти высоту треугольника со сторонами 126, 77 и 57
Найти высоту треугольника со сторонами 143, 121 и 25
Найти высоту треугольника со сторонами 119, 104 и 52