Рассчитать высоту треугольника со сторонами 117, 104 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 104 + 19}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-117)(120-104)(120-19)}}{104}\normalsize = 14.6679218}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-117)(120-104)(120-19)}}{117}\normalsize = 13.0381527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-117)(120-104)(120-19)}}{19}\normalsize = 80.2875718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 104 и 19 равна 14.6679218
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 104 и 19 равна 13.0381527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 104 и 19 равна 80.2875718
Ссылка на результат
?n1=117&n2=104&n3=19
Найти высоту треугольника со сторонами 81, 77 и 9
Найти высоту треугольника со сторонами 70, 63 и 27
Найти высоту треугольника со сторонами 92, 70 и 68
Найти высоту треугольника со сторонами 133, 84 и 70
Найти высоту треугольника со сторонами 96, 89 и 74
Найти высоту треугольника со сторонами 132, 127 и 51
Найти высоту треугольника со сторонами 70, 63 и 27
Найти высоту треугольника со сторонами 92, 70 и 68
Найти высоту треугольника со сторонами 133, 84 и 70
Найти высоту треугольника со сторонами 96, 89 и 74
Найти высоту треугольника со сторонами 132, 127 и 51