Рассчитать высоту треугольника со сторонами 117, 106 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 106 + 93}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-117)(158-106)(158-93)}}{106}\normalsize = 88.2882589}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-117)(158-106)(158-93)}}{117}\normalsize = 79.9876534}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-117)(158-106)(158-93)}}{93}\normalsize = 100.629628}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 106 и 93 равна 88.2882589
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 106 и 93 равна 79.9876534
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 106 и 93 равна 100.629628
Ссылка на результат
?n1=117&n2=106&n3=93
Найти высоту треугольника со сторонами 114, 74 и 67
Найти высоту треугольника со сторонами 119, 97 и 76
Найти высоту треугольника со сторонами 90, 88 и 78
Найти высоту треугольника со сторонами 105, 95 и 37
Найти высоту треугольника со сторонами 115, 70 и 50
Найти высоту треугольника со сторонами 115, 114 и 41
Найти высоту треугольника со сторонами 119, 97 и 76
Найти высоту треугольника со сторонами 90, 88 и 78
Найти высоту треугольника со сторонами 105, 95 и 37
Найти высоту треугольника со сторонами 115, 70 и 50
Найти высоту треугольника со сторонами 115, 114 и 41