Рассчитать высоту треугольника со сторонами 117, 107 и 107
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 107 + 107}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-117)(165.5-107)(165.5-107)}}{107}\normalsize = 97.9652277}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-117)(165.5-107)(165.5-107)}}{117}\normalsize = 89.5921314}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-117)(165.5-107)(165.5-107)}}{107}\normalsize = 97.9652277}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 107 и 107 равна 97.9652277
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 107 и 107 равна 89.5921314
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 107 и 107 равна 97.9652277
Ссылка на результат
?n1=117&n2=107&n3=107
Найти высоту треугольника со сторонами 134, 121 и 85
Найти высоту треугольника со сторонами 124, 121 и 27
Найти высоту треугольника со сторонами 109, 70 и 46
Найти высоту треугольника со сторонами 68, 39 и 35
Найти высоту треугольника со сторонами 136, 130 и 95
Найти высоту треугольника со сторонами 135, 111 и 86
Найти высоту треугольника со сторонами 124, 121 и 27
Найти высоту треугольника со сторонами 109, 70 и 46
Найти высоту треугольника со сторонами 68, 39 и 35
Найти высоту треугольника со сторонами 136, 130 и 95
Найти высоту треугольника со сторонами 135, 111 и 86