Рассчитать высоту треугольника со сторонами 117, 108 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 108 + 87}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-117)(156-108)(156-87)}}{108}\normalsize = 83.1277464}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-117)(156-108)(156-87)}}{117}\normalsize = 76.7333044}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-117)(156-108)(156-87)}}{87}\normalsize = 103.193065}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 108 и 87 равна 83.1277464
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 108 и 87 равна 76.7333044
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 108 и 87 равна 103.193065
Ссылка на результат
?n1=117&n2=108&n3=87
Найти высоту треугольника со сторонами 119, 91 и 38
Найти высоту треугольника со сторонами 132, 108 и 67
Найти высоту треугольника со сторонами 105, 88 и 74
Найти высоту треугольника со сторонами 95, 90 и 22
Найти высоту треугольника со сторонами 60, 50 и 15
Найти высоту треугольника со сторонами 121, 101 и 88
Найти высоту треугольника со сторонами 132, 108 и 67
Найти высоту треугольника со сторонами 105, 88 и 74
Найти высоту треугольника со сторонами 95, 90 и 22
Найти высоту треугольника со сторонами 60, 50 и 15
Найти высоту треугольника со сторонами 121, 101 и 88