Рассчитать высоту треугольника со сторонами 117, 109 и 21

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 109 + 21}{2}} \normalsize = 123.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-109)(123.5-21)}}{109}\normalsize = 20.0419322}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-109)(123.5-21)}}{117}\normalsize = 18.6715437}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123.5(123.5-117)(123.5-109)(123.5-21)}}{21}\normalsize = 104.027172}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 109 и 21 равна 20.0419322
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 109 и 21 равна 18.6715437
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 109 и 21 равна 104.027172
Ссылка на результат
?n1=117&n2=109&n3=21