Рассчитать высоту треугольника со сторонами 117, 113 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 113 + 47}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-117)(138.5-113)(138.5-47)}}{113}\normalsize = 46.6526487}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-117)(138.5-113)(138.5-47)}}{117}\normalsize = 45.0576864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-117)(138.5-113)(138.5-47)}}{47}\normalsize = 112.164879}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 113 и 47 равна 46.6526487
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 113 и 47 равна 45.0576864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 113 и 47 равна 112.164879
Ссылка на результат
?n1=117&n2=113&n3=47
Найти высоту треугольника со сторонами 131, 117 и 75
Найти высоту треугольника со сторонами 144, 121 и 76
Найти высоту треугольника со сторонами 141, 139 и 74
Найти высоту треугольника со сторонами 128, 92 и 73
Найти высоту треугольника со сторонами 130, 104 и 104
Найти высоту треугольника со сторонами 94, 53 и 44
Найти высоту треугольника со сторонами 144, 121 и 76
Найти высоту треугольника со сторонами 141, 139 и 74
Найти высоту треугольника со сторонами 128, 92 и 73
Найти высоту треугольника со сторонами 130, 104 и 104
Найти высоту треугольника со сторонами 94, 53 и 44