Рассчитать высоту треугольника со сторонами 117, 114 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 114 + 77}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-117)(154-114)(154-77)}}{114}\normalsize = 73.4956652}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-117)(154-114)(154-77)}}{117}\normalsize = 71.611161}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-117)(154-114)(154-77)}}{77}\normalsize = 108.811764}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 114 и 77 равна 73.4956652
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 114 и 77 равна 71.611161
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 114 и 77 равна 108.811764
Ссылка на результат
?n1=117&n2=114&n3=77
Найти высоту треугольника со сторонами 75, 54 и 52
Найти высоту треугольника со сторонами 71, 71 и 63
Найти высоту треугольника со сторонами 141, 110 и 63
Найти высоту треугольника со сторонами 122, 116 и 18
Найти высоту треугольника со сторонами 80, 62 и 43
Найти высоту треугольника со сторонами 95, 93 и 58
Найти высоту треугольника со сторонами 71, 71 и 63
Найти высоту треугольника со сторонами 141, 110 и 63
Найти высоту треугольника со сторонами 122, 116 и 18
Найти высоту треугольника со сторонами 80, 62 и 43
Найти высоту треугольника со сторонами 95, 93 и 58