Рассчитать высоту треугольника со сторонами 117, 115 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 115 + 12}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-117)(122-115)(122-12)}}{115}\normalsize = 11.9190718}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-117)(122-115)(122-12)}}{117}\normalsize = 11.715327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-117)(122-115)(122-12)}}{12}\normalsize = 114.224438}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 115 и 12 равна 11.9190718
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 115 и 12 равна 11.715327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 115 и 12 равна 114.224438
Ссылка на результат
?n1=117&n2=115&n3=12
Найти высоту треугольника со сторонами 111, 72 и 42
Найти высоту треугольника со сторонами 9, 7 и 4
Найти высоту треугольника со сторонами 116, 83 и 79
Найти высоту треугольника со сторонами 93, 76 и 20
Найти высоту треугольника со сторонами 85, 58 и 30
Найти высоту треугольника со сторонами 144, 109 и 87
Найти высоту треугольника со сторонами 9, 7 и 4
Найти высоту треугольника со сторонами 116, 83 и 79
Найти высоту треугольника со сторонами 93, 76 и 20
Найти высоту треугольника со сторонами 85, 58 и 30
Найти высоту треугольника со сторонами 144, 109 и 87