Рассчитать высоту треугольника со сторонами 117, 115 и 53

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 115 + 53}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-117)(142.5-115)(142.5-53)}}{115}\normalsize = 52.0100825}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-117)(142.5-115)(142.5-53)}}{117}\normalsize = 51.1210212}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-117)(142.5-115)(142.5-53)}}{53}\normalsize = 112.852066}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 115 и 53 равна 52.0100825
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 115 и 53 равна 51.1210212
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 115 и 53 равна 112.852066
Ссылка на результат
?n1=117&n2=115&n3=53