Рассчитать высоту треугольника со сторонами 117, 115 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 115 + 95}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-117)(163.5-115)(163.5-95)}}{115}\normalsize = 87.4044743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-117)(163.5-115)(163.5-95)}}{117}\normalsize = 85.9103808}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-117)(163.5-115)(163.5-95)}}{95}\normalsize = 105.805416}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 115 и 95 равна 87.4044743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 115 и 95 равна 85.9103808
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 115 и 95 равна 105.805416
Ссылка на результат
?n1=117&n2=115&n3=95
Найти высоту треугольника со сторонами 119, 69 и 67
Найти высоту треугольника со сторонами 144, 119 и 55
Найти высоту треугольника со сторонами 68, 68 и 18
Найти высоту треугольника со сторонами 145, 122 и 96
Найти высоту треугольника со сторонами 72, 68 и 32
Найти высоту треугольника со сторонами 150, 134 и 122
Найти высоту треугольника со сторонами 144, 119 и 55
Найти высоту треугольника со сторонами 68, 68 и 18
Найти высоту треугольника со сторонами 145, 122 и 96
Найти высоту треугольника со сторонами 72, 68 и 32
Найти высоту треугольника со сторонами 150, 134 и 122