Рассчитать высоту треугольника со сторонами 117, 70 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 70 + 70}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-70)(128.5-70)}}{70}\normalsize = 64.2522449}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-70)(128.5-70)}}{117}\normalsize = 38.441514}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-70)(128.5-70)}}{70}\normalsize = 64.2522449}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 70 и 70 равна 64.2522449
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 70 и 70 равна 38.441514
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 70 и 70 равна 64.2522449
Ссылка на результат
?n1=117&n2=70&n3=70
Найти высоту треугольника со сторонами 120, 99 и 51
Найти высоту треугольника со сторонами 120, 81 и 72
Найти высоту треугольника со сторонами 143, 106 и 105
Найти высоту треугольника со сторонами 142, 139 и 51
Найти высоту треугольника со сторонами 48, 28 и 21
Найти высоту треугольника со сторонами 84, 75 и 58
Найти высоту треугольника со сторонами 120, 81 и 72
Найти высоту треугольника со сторонами 143, 106 и 105
Найти высоту треугольника со сторонами 142, 139 и 51
Найти высоту треугольника со сторонами 48, 28 и 21
Найти высоту треугольника со сторонами 84, 75 и 58