Рассчитать высоту треугольника со сторонами 117, 73 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 73 + 66}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-117)(128-73)(128-66)}}{73}\normalsize = 60.0323926}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-117)(128-73)(128-66)}}{117}\normalsize = 37.4561082}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-117)(128-73)(128-66)}}{66}\normalsize = 66.3994645}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 73 и 66 равна 60.0323926
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 73 и 66 равна 37.4561082
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 73 и 66 равна 66.3994645
Ссылка на результат
?n1=117&n2=73&n3=66
Найти высоту треугольника со сторонами 79, 43 и 42
Найти высоту треугольника со сторонами 90, 90 и 59
Найти высоту треугольника со сторонами 150, 135 и 42
Найти высоту треугольника со сторонами 63, 61 и 35
Найти высоту треугольника со сторонами 126, 85 и 51
Найти высоту треугольника со сторонами 73, 61 и 60
Найти высоту треугольника со сторонами 90, 90 и 59
Найти высоту треугольника со сторонами 150, 135 и 42
Найти высоту треугольника со сторонами 63, 61 и 35
Найти высоту треугольника со сторонами 126, 85 и 51
Найти высоту треугольника со сторонами 73, 61 и 60