Рассчитать высоту треугольника со сторонами 117, 78 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 78 + 62}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-78)(128.5-62)}}{78}\normalsize = 57.1205511}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-78)(128.5-62)}}{117}\normalsize = 38.0803674}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-117)(128.5-78)(128.5-62)}}{62}\normalsize = 71.8613385}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 78 и 62 равна 57.1205511
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 78 и 62 равна 38.0803674
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 78 и 62 равна 71.8613385
Ссылка на результат
?n1=117&n2=78&n3=62