Рассчитать высоту треугольника со сторонами 117, 78 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 78 + 71}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-117)(133-78)(133-71)}}{78}\normalsize = 69.0714216}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-117)(133-78)(133-71)}}{117}\normalsize = 46.0476144}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-117)(133-78)(133-71)}}{71}\normalsize = 75.88128}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 78 и 71 равна 69.0714216
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 78 и 71 равна 46.0476144
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 78 и 71 равна 75.88128
Ссылка на результат
?n1=117&n2=78&n3=71
Найти высоту треугольника со сторонами 115, 105 и 81
Найти высоту треугольника со сторонами 62, 61 и 34
Найти высоту треугольника со сторонами 95, 90 и 45
Найти высоту треугольника со сторонами 106, 98 и 90
Найти высоту треугольника со сторонами 105, 67 и 62
Найти высоту треугольника со сторонами 84, 65 и 26
Найти высоту треугольника со сторонами 62, 61 и 34
Найти высоту треугольника со сторонами 95, 90 и 45
Найти высоту треугольника со сторонами 106, 98 и 90
Найти высоту треугольника со сторонами 105, 67 и 62
Найти высоту треугольника со сторонами 84, 65 и 26