Рассчитать высоту треугольника со сторонами 117, 87 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 87 + 42}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-117)(123-87)(123-42)}}{87}\normalsize = 33.7235033}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-117)(123-87)(123-42)}}{117}\normalsize = 25.0764512}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-117)(123-87)(123-42)}}{42}\normalsize = 69.8558282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 87 и 42 равна 33.7235033
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 87 и 42 равна 25.0764512
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 87 и 42 равна 69.8558282
Ссылка на результат
?n1=117&n2=87&n3=42
Найти высоту треугольника со сторонами 122, 111 и 66
Найти высоту треугольника со сторонами 57, 57 и 52
Найти высоту треугольника со сторонами 93, 56 и 53
Найти высоту треугольника со сторонами 145, 80 и 67
Найти высоту треугольника со сторонами 98, 98 и 1
Найти высоту треугольника со сторонами 89, 74 и 18
Найти высоту треугольника со сторонами 57, 57 и 52
Найти высоту треугольника со сторонами 93, 56 и 53
Найти высоту треугольника со сторонами 145, 80 и 67
Найти высоту треугольника со сторонами 98, 98 и 1
Найти высоту треугольника со сторонами 89, 74 и 18