Рассчитать высоту треугольника со сторонами 117, 87 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 87 + 67}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-117)(135.5-87)(135.5-67)}}{87}\normalsize = 66.3410605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-117)(135.5-87)(135.5-67)}}{117}\normalsize = 49.3305322}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-117)(135.5-87)(135.5-67)}}{67}\normalsize = 86.1443622}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 87 и 67 равна 66.3410605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 87 и 67 равна 49.3305322
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 87 и 67 равна 86.1443622
Ссылка на результат
?n1=117&n2=87&n3=67
Найти высоту треугольника со сторонами 123, 96 и 74
Найти высоту треугольника со сторонами 114, 93 и 48
Найти высоту треугольника со сторонами 116, 72 и 54
Найти высоту треугольника со сторонами 86, 50 и 38
Найти высоту треугольника со сторонами 79, 79 и 70
Найти высоту треугольника со сторонами 139, 92 и 48
Найти высоту треугольника со сторонами 114, 93 и 48
Найти высоту треугольника со сторонами 116, 72 и 54
Найти высоту треугольника со сторонами 86, 50 и 38
Найти высоту треугольника со сторонами 79, 79 и 70
Найти высоту треугольника со сторонами 139, 92 и 48