Рассчитать высоту треугольника со сторонами 117, 88 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 88 + 33}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-117)(119-88)(119-33)}}{88}\normalsize = 18.1036387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-117)(119-88)(119-33)}}{117}\normalsize = 13.616412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-117)(119-88)(119-33)}}{33}\normalsize = 48.27637}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 88 и 33 равна 18.1036387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 88 и 33 равна 13.616412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 88 и 33 равна 48.27637
Ссылка на результат
?n1=117&n2=88&n3=33
Найти высоту треугольника со сторонами 126, 118 и 115
Найти высоту треугольника со сторонами 149, 93 и 84
Найти высоту треугольника со сторонами 120, 113 и 68
Найти высоту треугольника со сторонами 87, 82 и 36
Найти высоту треугольника со сторонами 92, 74 и 48
Найти высоту треугольника со сторонами 129, 75 и 56
Найти высоту треугольника со сторонами 149, 93 и 84
Найти высоту треугольника со сторонами 120, 113 и 68
Найти высоту треугольника со сторонами 87, 82 и 36
Найти высоту треугольника со сторонами 92, 74 и 48
Найти высоту треугольника со сторонами 129, 75 и 56