Рассчитать высоту треугольника со сторонами 117, 98 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 98 + 72}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-98)(143.5-72)}}{98}\normalsize = 71.7813343}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-98)(143.5-72)}}{117}\normalsize = 60.1245364}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-117)(143.5-98)(143.5-72)}}{72}\normalsize = 97.7023716}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 98 и 72 равна 71.7813343
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 98 и 72 равна 60.1245364
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 98 и 72 равна 97.7023716
Ссылка на результат
?n1=117&n2=98&n3=72
Найти высоту треугольника со сторонами 143, 139 и 85
Найти высоту треугольника со сторонами 119, 114 и 80
Найти высоту треугольника со сторонами 144, 128 и 115
Найти высоту треугольника со сторонами 92, 91 и 60
Найти высоту треугольника со сторонами 150, 142 и 21
Найти высоту треугольника со сторонами 126, 101 и 73
Найти высоту треугольника со сторонами 119, 114 и 80
Найти высоту треугольника со сторонами 144, 128 и 115
Найти высоту треугольника со сторонами 92, 91 и 60
Найти высоту треугольника со сторонами 150, 142 и 21
Найти высоту треугольника со сторонами 126, 101 и 73